Answer
The inverse of matrix $ A $ is,
${{A}^{-1}}=\left[ \begin{matrix}
3 & 0 & -2 \\
-6 & 1 & 4 \\
1 & 0 & -1 \\
\end{matrix} \right]$ and $ A{{A}^{-1}}={{I}_{3}},{{A}^{-1}}A={{I}_{3}}$
Work Step by Step
First write the augmented matrix $\left[ A|{{I}_{3}} \right]$ as below:
$\left[ \begin{matrix}
1 & 0 & -2 & 1 & 0 & 0 \\
2 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & -3 & 0 & 0 & 1 \\
\end{matrix} \right]$
Now perform the elementary row operation to get a matrix of the form $\left[ {{I}_{3}}|B \right]$; then $ B $ will be the inverse of the matrix $ A $.
So apply, ${{R}_{2}}\to {{R}_{2}}-2{{R}_{1}}\text{ and }{{R}_{3}}\to {{R}_{3}}-{{R}_{1}}$ to get, $\left[ \begin{matrix}
1 & 0 & -2 & 1 & 0 & 0 \\
2 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & -3 & 0 & 0 & 1 \\
\end{matrix} \right]\sim \left[ \begin{matrix}
1 & 0 & -2 & 1 & 0 & 0 \\
0 & 1 & 4 & -2 & 1 & 0 \\
0 & 0 & -1 & -1 & 0 & 1 \\
\end{matrix} \right]$
Apply, ${{R}_{3}}\to \left( -1 \right){{R}_{3}}$ to get, $\left[ \begin{matrix}
1 & 0 & -2 & 1 & 0 & 0 \\
0 & 1 & 4 & -2 & 1 & 0 \\
0 & 0 & -1 & -1 & 0 & 1 \\
\end{matrix} \right]\sim \left[ \begin{matrix}
1 & 0 & -2 & 1 & 0 & 0 \\
0 & 1 & 4 & -2 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & -1 \\
\end{matrix} \right]$
Now apply the row transformation, ${{R}_{1}}\to {{R}_{1}}+2{{R}_{3}}\text{ and }{{R}_{2}}\to {{R}_{2}}-4{{R}_{3}}$ to get, $\left[ \begin{matrix}
1 & 0 & -2 & 1 & 0 & 0 \\
0 & 1 & 4 & -2 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & -1 \\
\end{matrix} \right]\sim \left[ \begin{matrix}
1 & 0 & 0 & 3 & 0 & -2 \\
0 & 1 & 0 & -6 & 1 & 4 \\
0 & 0 & 1 & 1 & 0 & -1 \\
\end{matrix} \right]$
This is of the form $\left[ {{I}_{3}}|B \right]$ ;
Where, $ B=\left[ \begin{matrix}
3 & 0 & -2 \\
-6 & 1 & 4 \\
1 & 0 & -1 \\
\end{matrix} \right]$
So, $ B $ is the multiplicative inverse of the matrix $ A $.
Thus, ${{A}^{-1}}=B=\left[ \begin{matrix}
3 & 0 & -2 \\
-6 & 1 & 4 \\
1 & 0 & -1 \\
\end{matrix} \right]$
Now verify this by showing that $ A{{A}^{-1}}={{I}_{3}}$ and ${{A}^{-1}}A={{I}_{3}}$.
So consider, $\begin{align}
& A{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & -2 \\
2 & 1 & 0 \\
1 & 0 & -3 \\
\end{matrix} \right]\left[ \begin{matrix}
3 & 0 & -2 \\
-6 & 1 & 4 \\
1 & 0 & -1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1\left( 3 \right)+0\left( -6 \right)+\left( -2 \right)1 & 1\left( 0 \right)+0\left( 1 \right)+\left( -2 \right)0 & 1\left( -2 \right)+0\left( 4 \right)+\left( -2 \right)\left( -1 \right) \\
2\left( 3 \right)+1\left( -6 \right)+0\left( 1 \right) & 2\left( 0 \right)+1\left( 1 \right)+0\left( 0 \right) & 2\left( -2 \right)+1\left( 4 \right)+0\left( -1 \right) \\
1\left( 3 \right)+0\left( -6 \right)+\left( -3 \right)\left( 1 \right) & 1\left( 0 \right)+0\left( 1 \right)+\left( -3 \right)0 & 1\left( -2 \right)+0\left( 4 \right)+\left( -3 \right)\left( -1 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
3-2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2+3 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]
\end{align}$
Next consider, $\begin{align}
& {{A}^{-1}}A=\left[ \begin{matrix}
3 & 0 & -2 \\
-6 & 1 & 4 \\
1 & 0 & -1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 0 & -2 \\
2 & 1 & 0 \\
1 & 0 & -3 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
3\left( 1 \right)+0\left( 2 \right)+\left( -2 \right)1 & 3\left( 0 \right)+0\left( 1 \right)+\left( -2 \right)\left( 0 \right) & 3\left( -2 \right)+0\left( 0 \right)+\left( -2 \right)\left( -3 \right) \\
\left( -6 \right)\left( 1 \right)+1\left( 2 \right)+4\left( 1 \right) & \left( -6 \right)\left( 0 \right)+1\left( 1 \right)+4\left( 0 \right) & \left( -6 \right)\left( -2 \right)+1\left( 0 \right)+4\left( -3 \right) \\
1\left( 1 \right)+0\left( 2 \right)+\left( -1 \right)\left( 1 \right) & 1\left( 0 \right)+0\left( 1 \right)+\left( -1 \right)\left( 0 \right) & 1\left( -2 \right)+0\left( 0 \right)+\left( -3 \right)\left( -3 \right) \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
3-2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2+3 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]
\end{align}$
Thus, $ A{{A}^{-1}}={{I}_{3}}$ and ${{A}^{-1}}A={{I}_{3}}$.
Hence, ${{A}^{-1}}=\left[ \begin{matrix}
3 & 0 & -2 \\
-6 & 1 & 4 \\
1 & 0 & -1 \\
\end{matrix} \right]$