Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 8 - Review Exercises - Page 951: 38

Answer

Matrix $ B $ is a multiplicative inverse of the matrix $ A $.

Work Step by Step

Find the product of $ AB $ as follows: $\begin{align} & AB=\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 2 & -7 \\ 0 & -1 & 4 \\ \end{matrix} \right]\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 4 & 7 \\ 0 & 1 & 2 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1\left( 1 \right)+0\left( 0 \right)+0\left( 0 \right) & 1\left( 0 \right)+0\left( 4 \right)+0\left( 1 \right) & 1\left( 0 \right)+0\left( 7 \right)+0\left( 2 \right) \\ 0\left( 1 \right)+2\left( 0 \right)-7\left( 0 \right) & 0\left( 0 \right)+2\left( 4 \right)-7\left( 1 \right) & 0\left( 0 \right)+2\left( 7 \right)-7\left( 2 \right) \\ 0\left( 1 \right)-1\left( 0 \right)+4\left( 0 \right) & 0\left( 0 \right)-1\left( 4 \right)+4\left( 1 \right) & 0\left( 0 \right)-1\left( 7 \right)+4\left( 2 \right) \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 8-7 & 14-14 \\ 0 & -4+4 & -7+8 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right] \end{align}$ Therefore, $ AB=\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right]$ Next we will find the product of $ BA $ as follows: $\begin{align} & BA=\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 4 & 7 \\ 0 & 1 & 2 \\ \end{matrix} \right]\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 2 & -7 \\ 0 & -1 & 4 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1\left( 1 \right)+0\left( 0 \right)+0\left( 0 \right) & 1\left( 0 \right)+0\left( 2 \right)+0\left( -1 \right) & 1\left( 0 \right)+0\left( -7 \right)+0\left( 4 \right) \\ 0\left( 1 \right)+4\left( 0 \right)+7\left( 0 \right) & 0\left( 0 \right)+4\left( 2 \right)+7\left( -1 \right) & 0\left( 0 \right)+4\left( -7 \right)+7\left( 4 \right) \\ 0\left( 1 \right)+1\left( 0 \right)+2\left( 0 \right) & 0\left( 0 \right)+1\left( 2 \right)+2\left( -1 \right) & 0\left( 0 \right)+1\left( -7 \right)+2\left( 4 \right) \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 8-7 & 28-28 \\ 0 & 2-2 & -7+8 \\ \end{matrix} \right] \\ & =\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{matrix} \right] \end{align}$ As $ AB=BA=I $, where $ I $ is an $3\times 3$ identity matrix, therefore, the given matrix $ B $ is a multiplicative inverse of the matrix $ A $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.