Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Review Exercises - Page 798: 21

Answer

$\$214,194$.

Work Step by Step

Heron’s formula to find the area of the triangle is given by: $\text{Area}=\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)}$ Where $s=\frac{a+b+c}{2}$ Here, $a=260,b=320,c=450$ So, $\begin{align} & s=\frac{260+320+450}{2} \\ & =\frac{1030}{2} \\ & =515 \end{align}$ So, the area of the triangle is $\begin{align} & \sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)}=\sqrt{515\left( 515-260 \right)\left( 515-320 \right)\left( 515-450 \right)} \\ & =\sqrt{515\times 255\times 195\times 65} \\ & =\sqrt{1664,544,375} \\ & \approx 40,798.83 \end{align}$ So, the area of the triangle is approximately $40,798.83$ square feet. Now, the cost of the triangular lot will be $40,798.83\times 5.25\approx 214,194$. So, the cost to the nearest dollar of the triangular lot is $\$214,194$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.