Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Review Exercises - Page 798: 20

Answer

The two roads measure $404\text{ and }551\text{ feet}$ respectively.

Work Step by Step

For the given triangle ABC, $A=55{}^\circ,B=46{}^\circ,a=460$ Using the angle sum property, compute the measure of angle C as follows: $\begin{align} & 55{}^\circ +46{}^\circ +C=180{}^\circ \\ & C=180{}^\circ -101{}^\circ \\ & C=79{}^\circ \end{align}$ Now, using the law of sines we will obtain the value of both b and c: $\begin{align} & \frac{a}{\sin A}=\frac{c}{\sin C} \\ & \frac{460}{\sin 55{}^\circ }=\frac{c}{\sin 79{}^\circ } \\ & c\cdot \sin 55{}^\circ =460\cdot \sin 79{}^\circ \\ & c=\frac{460\cdot \sin 79{}^\circ }{\sin 55{}^\circ } \end{align}$ This gives $c\approx 551$ to the nearest tenth. Also, $\begin{align} & \frac{a}{\sin A}=\frac{b}{\sin B} \\ & \frac{460}{\sin 55{}^\circ }=\frac{b}{\sin 46{}^\circ } \\ & b\cdot \sin 55{}^\circ =460\cdot \sin 46{}^\circ \\ & b=\frac{460\cdot \sin 46{}^\circ }{\sin 55{}^\circ } \end{align}$ This gives $b\approx 404$ to the nearest tenth.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.