Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 6 - Review Exercises - Page 798: 11

Answer

The two possible set of values are $A=59{}^\circ,C=84{}^\circ \text{ and }c\approx 14.4\text{ or }A=121{}^\circ,C=22{}^\circ \text{ and }c\approx 5.4$.

Work Step by Step

For any triangle, The law of sines states that: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\operatorname{sinC}}$ The law of cosines states that: $\begin{align} & {{a}^{2}}={{b}^{2}}+{{c}^{2}}-2\cdot b\cdot c\cdot \cos A \\ & {{b}^{2}}={{a}^{2}}+{{c}^{2}}-2\cdot a\cdot c\cdot \cos B \\ & {{c}^{2}}={{a}^{2}}+{{b}^{2}}-2\cdot a\cdot b\cdot \cos C \\ \end{align}$ Using the law of sines we get, $\begin{align} & \frac{a}{\sin A}=\frac{b}{\sin B} \\ & \frac{12.4}{\sin A}=\frac{8.7}{\sin 37{}^\circ } \\ & 8.7\left( \sin A \right)=12.4\left( \sin 37{}^\circ \right) \\ & \sin A=\frac{12.4\left( \sin 37{}^\circ \right)}{8.7} \end{align}$ It can further be simplified to get a measure of angle C. $\begin{align} & \sin A=0.85 \\ & A={{\sin }^{-1}}\left( 0.85 \right) \\ & A\approx 59{}^\circ,121{}^\circ \end{align}$ Now using the angle sum property for both values of A we will get the measure of angle C. For $A=59{}^\circ $, $\begin{align} & 59{}^\circ +37{}^\circ +C=180{}^\circ \\ & C=180{}^\circ -96{}^\circ \\ & C=84{}^\circ \end{align}$ For $A=121{}^\circ $, $\begin{align} & 121{}^\circ +37{}^\circ +C=180{}^\circ \\ & C=180{}^\circ -158{}^\circ \\ & C=22{}^\circ \end{align}$ Now using the law of sines we will obtain two values of side c for different angles C: For $C=84{}^\circ $ $\begin{align} & \frac{8.7}{\sin 37{}^\circ }=\frac{c}{\sin 84{}^\circ } \\ & c\cdot \sin 37{}^\circ =8.7\left( \sin 84{}^\circ \right) \\ & c=\frac{8.7\left( \sin 84{}^\circ \right)}{\sin 37{}^\circ } \end{align}$ This gives $c\approx 14.4$. For $C=22{}^\circ $, $\begin{align} & \frac{8.7}{\sin 37{}^\circ }=\frac{c}{\sin 22{}^\circ } \\ & c\cdot \sin 37{}^\circ =8.7\left( \sin 22{}^\circ \right) \\ & c=\frac{8.7\left( \sin 22{}^\circ \right)}{\sin 37{}^\circ } \end{align}$ This gives $c\approx 5.4$. So, $\begin{align} & A=59{}^\circ,C=84{}^\circ \text{ and }c\approx 14.4 \\ & A=121{}^\circ,C=22{}^\circ \text{ and }c\approx 5.4 \\ \end{align}$ Hence, $A=59{}^\circ,C=84{}^\circ \text{ and }c\approx 14.4\text{ or }A=121{}^\circ,C=22{}^\circ \text{ and }c\approx 5.4$ are the two sets of possible values.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.