Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.5 - Trigonometric Equations - Exercise Set - Page 704: 98

Answer

The exact solution of the equation $2\sin 3x+\sqrt{3}=0$ on the interval $\left[ 0,2\pi \right)$ is $\frac{4\pi }{9}$ , $\frac{5\pi }{9}$ , $\frac{10\pi }{9}$ , $\frac{11\pi }{9}$ , $\frac{16\pi }{9}$ , and $\frac{17\pi }{9}$.

Work Step by Step

Let us consider the provided expression: $2\sin 3x+\sqrt{3}=0$ Add $-\sqrt{3}\text{ }$ on both sides: $\begin{align} & 2\sin 3x+\sqrt{3}-\sqrt{3}=0-\sqrt{3} \\ & 2\sin 3x=-\sqrt{3} \end{align}$ And divide by $2$ on both sides: $\begin{align} & \frac{2\sin 3x}{2}=\frac{-\sqrt{3}}{2} \\ & \sin 3x=\frac{-\sqrt{3}}{2} \end{align}$ On, the interval $\left[ 0,2\pi \right),$ the sine function is $\frac{-\sqrt{3}}{2}$ at $\frac{4\pi }{3}\text{ and }\frac{5\pi }{3}$. So, $\begin{align} & \sin 3x=\frac{-\sqrt{3}}{2} \\ & 3x=\frac{4\pi }{3} \end{align}$ Or, $\begin{align} & \sin 3x=\frac{-\sqrt{3}}{2} \\ & 3x=\frac{5\pi }{3} \end{align}$ Since the period of the sine function is $2\pi $, the general solution of the equation is: $\begin{align} & 3x=\frac{4\pi }{3}+2n\pi \\ & x=\frac{4\pi }{9}+\frac{2n\pi }{3} \end{align}$ Or, $\begin{align} & 3x=\frac{5\pi }{3}+2n\pi \\ & x=\frac{5\pi }{9}+\frac{2n\pi }{3} \end{align}$ To get different solutions, put $\text{ }n=0,1,2,3\ldots $ When $n=0$ , $x=\frac{4\pi }{9}\text{ or }x=\frac{5\pi }{9}$ When $n=1$ , $\begin{align} & x=\frac{4\pi }{9}+\frac{2\pi }{3} \\ & =\frac{10\pi }{9} \end{align}$ Or, $\begin{align} & x=\frac{5\pi }{9}+\frac{2\pi }{3} \\ & =\frac{11\pi }{9} \end{align}$ When $n=2$ , $\begin{align} & x=\frac{4\pi }{9}+\frac{4\pi }{3} \\ & =\frac{16\pi }{9} \end{align}$ Or, $\begin{align} & x=\frac{5\pi }{9}+\frac{4\pi }{3} \\ & =\frac{17\pi }{9} \end{align}$ Put the other values of $n$; then the solution becomes outside the interval $\left[ 0,2\pi \right).$ Thus, the exact solution of the equation $2\sin 3x+\sqrt{3}=0$ on the interval $\left[ 0,2\pi \right)$ is $\frac{4\pi }{9}$ , $\frac{5\pi }{9}$ , $\frac{10\pi }{9}$ , $\frac{11\pi }{9}$ , $\frac{16\pi }{9}$ , and $\frac{17\pi }{9}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.