Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.5 - Trigonometric Equations - Exercise Set - Page 704: 111

Answer

The solution is $\underline{x=0.7494,5.5338}.$

Work Step by Step

We know that for a standard quadratic equation of the form $a{{x}^{2}}+bx+c=0$, the solution is: $x=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ And replace $x\text{ by }\cos x\text{ }$ in the standard quadratic equation to obtain the given equation in $\cos x$. Then the solution of the provide equation is: $\begin{align} & \cos x=\frac{-\left( 2 \right)\pm \sqrt{{{\left( 2 \right)}^{2}}-\left( 4\times 1\times -2 \right)}}{2\times 1} \\ & =\frac{-2\pm \sqrt{4+8}}{2} \\ & =\frac{-2\pm \sqrt{12}}{2} \end{align}$ That is, $\begin{align} & \cos x=\frac{-2+\sqrt{12}}{2} \\ & =\frac{-2+3.4641}{2} \\ & \cos x\approx 0.7321 \end{align}$ Or, $\begin{align} & \cos x=\frac{-2-\sqrt{12}}{2} \\ & \cos x\approx -2.7321 \\ \end{align}$ But $\operatorname{cosine}$ of any number lies only in the interval $\left[ -1,1 \right]$. So $\cos x\ne -2.7321$ and it is not the solution. The only solution is: $\begin{align} & \cos x\approx 0.7321 \\ & x\approx {{\cos }^{-1}}\left( 0.7321 \right) \end{align}$ We have to calculate the equation using a calculator; it is required to keep the calculator in radian mode and find the value of ${{\cos }^{-1}}\left( 0.7321 \right)$. $\begin{align} & x\approx {{\cos }^{-1}}\left( 0.7321 \right) \\ & \approx 0.7494 \end{align}$ And the cosine value is positive in I and IV quadrants. So, $x\approx 0.7494$ And the other value will be: $\begin{align} & x\approx 2\pi -0.7494 \\ & \approx 2\times 3.14159-0.7494 \\ & \approx 5.5338 \end{align}$ Where, $\pi =3.14159$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.