Answer
The solution is $\underline{x=1.7798,4.9214}.$
Work Step by Step
We have to compute the value:
$\begin{align}
& \tan x=-4.7143 \\
& x={{\tan }^{-1}}\left( -4.7143 \right)
\end{align}$
We have to calculate the equation using a calculator in radian mode:
$\begin{align}
& \theta ={{\tan }^{-1}}\left( +4.7143 \right) \\
& \approx +4.7143
\end{align}$
And the value will be:
${{\tan }^{-1}}\left( +4.7143 \right)\approx 1.3618$
The tangent value is negative in II and IV quadrants. So,
$\begin{align}
& x\approx \pi -1.3618 \\
& \approx 3.14159-1.3618 \\
& \approx 1.7798
\end{align}$
And another value will be:
$\begin{align}
& x\approx 2\pi -1.3618 \\
& \approx 2\times 3.14159-1.3618 \\
& \approx 4.9214
\end{align}$