Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.2 - Sum and Difference Formulas - Exercise Set - Page 669: 28

Answer

The expression $\frac{\tan 50{}^\circ -\tan 20{}^\circ }{1+\tan 50{}^\circ \tan 20{}^\circ }$ is written as $\tan 30{}^\circ $ and the exact value of $\tan 30{}^\circ $ is $\frac{1}{\sqrt{3}}$.

Work Step by Step

Use the difference formula of tangent and rewrite the expression as the difference of angles to obtain the tangent of the angle as, $\begin{align} & \tan \left( 50{}^\circ -20{}^\circ \right)=\frac{\tan 50{}^\circ -\tan 20{}^\circ }{1+\tan 50{}^\circ \tan 20{}^\circ } \\ & \tan \left( 30{}^\circ \right)=\frac{\tan 50{}^\circ -\tan 20{}^\circ }{1+\tan 50{}^\circ \tan 20{}^\circ } \end{align}$ Therefore, the expression $\frac{\tan 50{}^\circ -\tan 20{}^\circ }{1+\tan 50{}^\circ \tan 20{}^\circ }$ is equivalent to $\tan 30{}^\circ $. From the knowledge of trigonometric ratios defined for tangent of an angle, the exact value of $\tan 30{}^\circ $ is $\frac{1}{\sqrt{3}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.