Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 5 - Section 5.2 - Sum and Difference Formulas - Exercise Set - Page 669: 24

Answer

The exact value of $\tan \left( \frac{5\pi }{3}-\frac{\pi }{4} \right)$ is $2+\sqrt{3}$.

Work Step by Step

Use the difference formula of the tangent and evaluate the expression as, $\tan \left( \frac{5\pi }{3}-\frac{\pi }{4} \right)=\frac{\tan \frac{5\pi }{3}-\tan \frac{\pi }{4}}{1+\tan \frac{5\pi }{3}\tan \frac{\pi }{4}}$ Substitute the values, $\tan \frac{5\pi }{3}=-\sqrt{3}$ and $\tan \frac{\pi }{4}=1$. $\begin{align} & \tan \left( \frac{5\pi }{3}+\frac{\pi }{4} \right)=\frac{-\sqrt{3}-1}{1+\left( -\sqrt{3}\times 1 \right)} \\ & =-\left( \frac{1+\sqrt{3}}{1-\sqrt{3}} \right) \end{align}$ Further, rationalize the result and solve as, $\begin{align} & \tan \left( \frac{5\pi }{3}-\frac{\pi }{4} \right)=-\left( \frac{1+\sqrt{3}}{1-\sqrt{3}} \right)\times \frac{1+\sqrt{3}}{1+\sqrt{3}} \\ & =-\frac{{{\left( 1+\sqrt{3} \right)}^{2}}}{{{1}^{2}}-{{\left( \sqrt{3} \right)}^{2}}} \\ & =-\frac{\left( 1+3+2\sqrt{3} \right)}{1-3} \\ & =\frac{4+2\sqrt{3}}{2} \end{align}$ Thus, $\begin{align} & \tan \left( \frac{5\pi }{3}+\frac{\pi }{4} \right)=\frac{2\left( 2+\sqrt{3} \right)}{2} \\ & =2+\sqrt{3} \end{align}$ Hence, the exact value of $\tan \left( \frac{5\pi }{3}+\frac{\pi }{4} \right)$ is equivalent to $2+\sqrt{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.