Answer
The exact value of $\sin 75{}^\circ $ is $\frac{\sqrt{3}+1}{2\sqrt{2}}$.
Work Step by Step
Rewrite the expression for sine of $75{}^\circ $ as the sum of two angles as,
$\sin 75{}^\circ =\sin \left( 45{}^\circ +30{}^\circ \right)$
Use the sum formula of sines and evaluate the modified expression as,
$\sin \left( 45{}^\circ +30{}^\circ \right)=\sin 45{}^\circ \cos 30{}^\circ +\cos 45{}^\circ \sin 30{}^\circ $
Substitute the values, $\cos 45{}^\circ =\frac{1}{\sqrt{2}},\text{ }\cos 30{}^\circ =\frac{\sqrt{3}}{2},\text{ }\sin 45{}^\circ =\frac{1}{\sqrt{2}},\text{ and }\sin 30{}^\circ =\frac{1}{2}$.
$\begin{align}
& \sin \left( 45{}^\circ +30{}^\circ \right)=\left( \frac{1}{\sqrt{2}}\times \frac{\sqrt{3}}{2} \right)+\left( \frac{1}{\sqrt{2}}\times \frac{1}{2} \right) \\
& =\frac{\sqrt{3}}{2\sqrt{2}}+\frac{1}{2\sqrt{2}} \\
& =\frac{\sqrt{3}+1}{2\sqrt{2}}
\end{align}$
Hence, the exact value of $\sin 75{}^\circ $ is equivalent to $\frac{\sqrt{3}+1}{2\sqrt{2}}$.