Answer
sin θ = $\frac{8}{17}$
cos θ = $\frac{15}{17}$
tan θ =$\frac{8}{15}$
csc θ = $\frac{17}{8}$
sec θ = $\frac{17}{15}$
cot θ = $\frac{15}{8}$
Work Step by Step
$a^{2}$ + $b^{y2}$ = $c^{2}$
given b= 15, c= 17
$a^{2}$ + $15^{2}$ = $17^{2}$
$a^{2}$ = 289 - 225
$a^{2}$ = 64
a = $\sqrt {64}$ = 8
sin θ = $\frac{opposite}{hypotenuse}$ = $\frac{8}{17}$
cos θ = $\frac{adjacent}{hypotenuse}$ = $\frac{15}{17}$
tan θ = $\frac{opposite}{adjacent}$ = $\frac{8}{15}$
csc θ = $\frac{1}{sin θ}$ = $\frac{17}{8}$
sec θ = $\frac{1}{cos θ}$ = $\frac{17}{15}$
cot θ = $\frac{1}{tan θ}$ = $\frac{15}{8}$