Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 4 - Section 4.3 - Right Triangle Trigonometry - Exercise Set - Page 560: 18

Answer

The value of $\cos \frac{\pi }{3}\sec \frac{\pi }{3}-\cot \frac{\pi }{3}$ is $\frac{3-\sqrt{3}}{3}$.

Work Step by Step

Consider the given expression $\cos \frac{\pi }{3}\sec \frac{\pi }{3}-\cot \frac{\pi }{3}$. Consider the provided right angled triangle. To find $\cos \left( \frac{\pi }{3} \right)$ apply the definition of $\cos \theta $ to the provided triangle, $\cos \theta =\frac{\text{Length of side adjacent of }\theta }{\text{hypotenuse}}$. But, here, $\theta =\frac{\pi }{3}$ , and $\cos \left( \frac{\pi }{3} \right)=\cos 60{}^\circ $. Therefore, $\begin{align} & \cos \left( \frac{\pi }{3} \right)=\frac{\text{Length of side adjacent of 60}{}^\circ }{\text{Length of hypotenuse}} \\ & =\frac{1}{2} \end{align}$ Now, apply the formula for the inverse trigonometric function as, $\sec \theta =\frac{1}{\cos \theta }$. $\begin{align} & \sec \left( \frac{\pi }{3} \right)=\frac{1}{\cos \left( \frac{\pi }{3} \right)} \\ & =\frac{1}{\left( \frac{1}{2} \right)} \\ & =2 \end{align}$ Now, apply the definition of $\tan \theta $ to the provided triangle, $\tan \theta =\frac{\text{Length of side opposite of }\theta }{\text{Length of side adjacent of }\theta }$. Therefore, $\begin{align} & \tan \left( \frac{\pi }{3} \right)=\frac{\text{Length of side opposite of 60}{}^\circ }{\text{Length of side adjacent of 60}{}^\circ } \\ & =\frac{\sqrt{3}}{1} \\ & =\sqrt{3} \end{align}$ But, $\begin{align} & \cot \left( \frac{\pi }{3} \right)=\frac{1}{\tan \left( \frac{\pi }{3} \right)} \\ & =\frac{1}{\sqrt{3}} \end{align}$ Rationalize the denominator as, $\begin{align} & \cot \left( \frac{\pi }{3} \right)=\frac{1}{\sqrt{3}}\times \frac{\sqrt{3}}{\sqrt{3}} \\ & =\frac{\sqrt{3}}{3} \end{align}$ Now substitute $\cos \left( \frac{\pi }{3} \right)=\frac{1}{2},\text{ sec}\left( \frac{\pi }{3} \right)=2\ \text{and }\cot \left( \frac{\pi }{3} \right)=\frac{\sqrt{3}}{3}$ in the provided expression, $\cos \frac{\pi }{3}\sec \frac{\pi }{3}-\cot \frac{\pi }{3}$. Therefore, $\begin{align} & \cos \frac{\pi }{3}\sec \frac{\pi }{3}-\cot \frac{\pi }{3}=\frac{1}{2}.\left( 2 \right)-\frac{\sqrt{3}}{3} \\ & =1-\frac{\sqrt{3}}{3} \\ & =\frac{3-\sqrt{3}}{3} \end{align}$ Hence the value of $\cos \frac{\pi }{3}\sec \frac{\pi }{3}-\cot \frac{\pi }{3}$ is $\frac{3-\sqrt{3}}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.