Answer
sin θ = $\frac{3}{5}$
cos θ = $\frac{4}{5}$
tan θ =$\frac{3}{4}$
csc θ = $\frac{5}{3}$
sec θ = $\frac{5}{4}$
cot θ = $\frac{4}{3}$
Work Step by Step
$a^{2}$ + $b^{2}$ = $c^{2}$
given a = 9, b= 12
$9^{2}$ + $12^{2}$ = $c^{2}$
$c^{2}$ = 81 + 144
$c^{2}$ = 225
c = $\sqrt {225}$ = 15
sin θ = $\frac{opposite}{hypotenuse}$ = $\frac{9}{15}$
sin θ = $\frac{3}{5}$
cos θ = $\frac{adjacent}{hypotenuse}$ = $\frac{12}{15}$
cos θ = $\frac{4}{5}$
tan θ = $\frac{opposite}{adjacent}$ = $\frac{9}{12}$
tan θ = $\frac{3}{4}$
csc θ = $\frac{1}{sin θ}$ = $\frac{5}{3}$
sec θ = $\frac{1}{cos θ}$ = $\frac{5}{4}$
cot θ = $\frac{1}{tan θ}$ = $\frac{4}{3}$