Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 4 - Section 4.2 - Trigonometric Functions: The Unit Circle - Exercise Set - Page 548: 55

Answer

a) The value is $0$. b) The value is $0$.

Work Step by Step

(a) The point corresponding to $t=\frac{\pi }{2}$ has the coordinates $\left( 1,0 \right)$ Thus, use $x=1$ and $y=0$ Such that, $\cos \left( \frac{\pi }{2} \right)=y=0$ Therefore, the value of the trigonometric function $\cos \left( \frac{\pi }{2} \right)$ is $0$. (b) We know that the periodic properties of sine and cosine functions are, $\sin \left( t+2\pi \right)=\sin \left( t \right)$ and $\text{cos}\left( t+2\pi \right)=\cos \left( t \right)$. So, $\begin{align} & \cos \left( \frac{9\pi }{2} \right)=\cos \left( \frac{\pi }{2}+4\pi \right) \\ & =\cos \left( \frac{\pi }{2}+2\left( 2\pi \right) \right) \\ & =\cos \frac{\pi }{2} \end{align}$ Now, put $\cos \left( \frac{\pi }{2} \right)=0$. So, $\cos \left( \frac{9\pi }{2} \right)=0$ Thus, the value of the trigonometric function $\cos \left( \frac{9\pi }{2} \right)$ is $0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.