Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 3 - Section 3.1 - Exponential Functions - Exercise Set - Page 451: 93

Answer

Please see below.

Work Step by Step

a) We need to compare $\cosh (-x)$ with $\cosh x$:$$\cosh (-x)= \frac{e^{-x}+e^{-(-x)}}{2}=\frac{e^x+e^{-x}}{2}=\cosh x$$ Thus, $\cosh x$ is an even function. b) We need to compare $\sinh (-x)$ with $\sinh x$:$$\sinh (-x)= \frac{e^{-x}-e^{-(-x)}}{2}=-\frac{e^x-e^{-x}}{2}=-\sinh x$$ Thus, $\sinh x$ is an odd function. c)$$(\cosh x)^2-(\sinh x)^2=\left ( \frac{e^x+e^{-x}}{2} \right )^2 - \left ( \frac{e^x-e^{-x}}{2} \right )^2=\frac{e^{2x}+e^{-2x}+2}{4} - \frac{e^{2x}+e^{-2x}-2}{4}=\frac{4}{4}=1$$(Please note that $e^{x}e^{-x}=e^{x+ (-x)}=e^0=1$).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.