Answer
$ a.\displaystyle \quad y=(\frac{1}{3})^{x}$
$ b.\displaystyle \quad y=(\frac{1}{5})^{x}$
$ c.\quad y=5^{x}$
$ d.\quad y=3^{x}$
Work Step by Step
The always rising graphs (c and d) are graphs of the functions with bases greater than 1.
The greater the base, the steeper the rise after crossing the y-axis.
So, $(c)$ is $ 5^{x},\ \quad(d)$ is $3^{x}.$
$ a $ is the reflection (about the y-axis) of $ d $, so it is the graph of $3^{-x}=(\displaystyle \frac{1}{3})^{x}.$
$ b $ is the reflection (about the y-axis) of $ c $, so it is the graph of $5^{-x}=(\displaystyle \frac{1}{5})^{x}.$
$ a.\displaystyle \quad y=(\frac{1}{3})^{x}$
$ b.\displaystyle \quad y=(\frac{1}{5})^{x}$
$ c.\quad y=5^{x}$
$ d.\quad y=3^{x}$