Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 2 - Section 2.3 - Polynomial Functions and Their Graphs - Exercise Set - Page 349: 45

Answer

a. $x\to-\infty, y\to-\infty$ and when $x\to\infty, y\to-\infty$, see explanations. b. $x=-4,0,4$, crosses the x-axis at $x=\pm4$, touch and turn around at $x=0$ c. $y=0$. d. symmetric with respect to the y-axis. e. See graph and explanations.

Work Step by Step

Given the function $f(x)=-x^4+16x^2$, we have: a. The leading term is $-x^4$ with an coefficient of $-1$ and even power, when $x\to-\infty, y\to-\infty$ and when $x\to\infty, y\to-\infty$ Thus the curve will fall as $x$ increases (right end) and it will also fall as $x$ decreases (left end). b. Factor the equation as $f(x)=-x^2(x^2-16)=-x^2(x+4)(x-4)$; thus the x-intercepts are $x=-4,0,4$ and the graph crosses the x-axis at the intercept $x=\pm4$, but will touch and turn around at $x=0$ (even powers). c. We can find the y-intercept by letting $x=0$ which gives $y=0$. d. Test $f(-x)=-(-x)^4+16(-x)^2=-x^4+16x^2$. As $f(-x)= f(x)$, the graph is symmetric with respect to the y-axis. e. See graph, as $n=4$, the maximum number of turning points will be $3$ which agrees with the graph.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.