Answer
$-5697$
Work Step by Step
When a polynomial $ f(x)$ is divided by $(x-a)$, then the remainder is $ r=f(a)$
We see that $ f(-13)$ is the remainder when $ f(x)= 2x^3-7x^2+9x-3$ is divided by $(x+13)$.
So, $(x+13) ]\times 2x^2-33x^2+9x-3$
or, $(x+13)(2x^2-33x)+438 x-3$
or, $(x+13)(2x^2-33x+438)-5697$
Thus, $ f(-13)=-5697$