Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.2 - Finding Limits Using Properties of Limits - Exercise Set - Page 1154: 69

Answer

The limit of a quotient, $\frac{f\left( x \right)}{g\left( x \right)}$ is $\underset{x\to a}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\frac{\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)}{\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)}$ such that $\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)\ne 0$

Work Step by Step

For finding the limit of a quotient, first find the limit of each function in the quotient. Then divide each of these limits, provided that the limit of the denominator is not zero. In other words, the limit of the quotient of two functions equals the quotient of their limits, provided that the limit of the denominator is not zero. In limit notation, If $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=L $ and $\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)=M $, $ M\ne 0$ then $\underset{x\to a}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\frac{\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)}{\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)}=\frac{L}{M},M\ne 0$ For example: Let $ f\left( x \right)=x $ and $ g\left( x \right)=2$. To find the limit of the quotient of $ f\left( x \right)$ and $ g\left( x \right)$, $\underset{x\to 2}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}$, $\begin{align} & \underset{x\to 2}{\mathop{\lim }}\,\frac{f\left( x \right)}{g\left( x \right)}=\frac{\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)}{\underset{x\to 2}{\mathop{\lim }}\,g\left( x \right)} \\ & =\frac{\underset{x\to 2}{\mathop{\lim }}\,x}{\underset{x\to 2}{\mathop{\lim }}\,2} \\ & =\frac{2}{2} \\ & =1 \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.