Answer
a) The limit $\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ is equal to $8$.
b) The limit $\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ is equal to $8$.
c) The limit $\underset{x\to 4}{\mathop{\lim }}\,f\left( x \right)$ is 8.
Work Step by Step
(a)
Consider the provided limit,
$\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f\left( x \right)$
This means that it is required to calculate the value of $ f\left( x \right)$ when $ x $ is close to 4 but not equal to 4.
Since, $ x $ is not equal to 4, using the first line of the piecewise defined function's equation
$ f\left( x \right)=\frac{{{x}^{2}}-16}{x-4}\ \text{if }\ x\ne 4$
Now use the property ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ solve the limit to get the result
$\begin{align}
& \underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,\frac{{{x}^{2}}-16}{x-4} \\
& =\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,\frac{\left( x-4 \right)\left( x+4 \right)}{x-4}
\end{align}$
Cancel out $ x-4$ from both the numerator and denominator.
$\begin{align}
& \underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,\frac{\left( x-4 \right)\left( x+4 \right)}{\left( x-4 \right)} \\
& =\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,\left( x+4 \right)
\end{align}$
Use limit property $\underset{x\to a}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)=\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$.
$\begin{align}
& \underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,\left( x+4 \right) \\
& =\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,x+\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,4
\end{align}$
Again, use $\underset{x\to a}{\mathop{\lim }}\,c=c\text{, where }c=\text{constant}$
$\begin{align}
& \underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,x+\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,4 \\
& =4+4 \\
& =8
\end{align}$
Thus, the limit $\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ is equal to $8$.
(b)
Consider the provided limit,
$\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f\left( x \right)$
This means that it is required to calculate the value of $ f\left( x \right)$ when $ x $ is close to 4 but greater than 4.
Because $ x $ is greater than 4, using the first line of the piecewise defined function's equation
$ f\left( x \right)=\frac{{{x}^{2}}-16}{x-4}\ \ \text{if }\ x\ne 4$
Use the property ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ to solve the limit to get the result
$\begin{align}
& \underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,\frac{{{x}^{2}}-16}{x-4} \\
& =\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,\frac{\left( x-4 \right)\left( x+4 \right)}{x-4}
\end{align}$
Cancel out $ x-4$ from both the numerator and denominator.
$\begin{align}
& \underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,\frac{\left( x-4 \right)\left( x+4 \right)}{\left( x-4 \right)} \\
& =\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,\left( x+4 \right)
\end{align}$
Use limit property $\underset{x\to a}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)=\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$
$\begin{align}
& \underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,\left( x+4 \right) \\
& =\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,x+\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,4
\end{align}$
Now use $\underset{x\to a}{\mathop{\lim }}\,c=c\text{, where }c=\text{constant}$
$\begin{align}
& \underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,x+\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,4 \\
& =4+4 \\
& =8
\end{align}$
Thus, the limit $\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ is equal to $8$.
(c)
Consider the provided limit,
$\underset{x\to 4}{\mathop{\lim }}\,f\left( x \right)$
From part (a) $\underset{x\to {{4}^{-}}}{\mathop{\lim }}\,f\left( x \right)=8$
From part (b) $\underset{x\to {{4}^{+}}}{\mathop{\lim }}\,f\left( x \right)=8$
As $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{a}^{+}}}{\mathop{\lim }}\,f\left( x \right)$
Thus, the limit $\underset{x\to 4}{\mathop{\lim }}\,f\left( x \right)$ is 8.