Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.2 - Finding Limits Using Properties of Limits - Exercise Set - Page 1154: 67

Answer

The limit $\underset{x\to 2}{\mathop{\lim }}\,{{\left( 3{{x}^{2}}-10 \right)}^{3}}$ is 8. And the corresponding limit property is $\underset{x\to a}{\mathop{\lim }}\,{{\left[ f\left( x \right) \right]}^{n}}={{\left[ \underset{x\to a}{\mathop{\lim }}\,f\left( x \right) \right]}^{n}}={{L}^{n}}$, where $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=L $ and $ n $ is any integer.

Work Step by Step

Consider the given limit, $\underset{x\to 2}{\mathop{\lim }}\,{{\left( 3{{x}^{2}}-10 \right)}^{3}}$. First, find $\underset{x\to 2}{\mathop{\lim }}\,\left( 3{{x}^{2}}-10 \right)$. $\begin{align} & \underset{x\to 2}{\mathop{\lim }}\,\left( 3{{x}^{2}}-10 \right)=\left( 3\times {{2}^{2}} \right)-10 \\ & =3\times 4-10 \\ & =12-10 \\ & =2 \end{align}$ The limit that is required is calculated by taking this limit, 2, and raising it to the third power. Thus, $\underset{x\to 2}{\mathop{\lim }}\,{{\left( 3{{x}^{2}}-10 \right)}^{3}}={{\left[ \underset{x\to 2}{\mathop{\lim }}\,\left( 3{{x}^{2}}-10 \right) \right]}^{3}}={{2}^{3}}=8$. In limit notation, the corresponding limit property is If $\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=L $ and $ n $ is any integer, then $\underset{x\to a}{\mathop{\lim }}\,{{\left[ f\left( x \right) \right]}^{n}}={{\left[ \underset{x\to a}{\mathop{\lim }}\,f\left( x \right) \right]}^{n}}={{L}^{n}}$ In words, the limit of a function to a power is found by taking the limit of the function and then raising this limit to the power.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.