Answer
a) The limit $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ is equal to $10$.
b) The limit $\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ is equal to $10$.
c) The limit $\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)$ is 10.
Work Step by Step
(a)
Consider the provided limit,
$\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$
This means that it is required to calculate the value of $ f\left( x \right)$ when $ x $ is close to 2 but less than 2.
Since, $ x $ is less than 2, using the first line of the piecewise defined function's equation
$ f\left( x \right)={{x}^{2}}+6\ \ \text{if }\ x<2$
$\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,\left( {{x}^{2}}+6 \right)$
Now use limit property $\underset{x\to a}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)=\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$,
$\begin{align}
& \underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,\left( {{x}^{2}}+6 \right) \\
& =\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,{{x}^{2}}+\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,6
\end{align}$
Use the property $\underset{x\to a}{\mathop{\lim }}\,c=c\text{, where }c=\text{constant}$
$\begin{align}
& \underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,{{x}^{2}}+\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,6 \\
& ={{2}^{2}}+6 \\
& =4+6 \\
& =10
\end{align}$
Thus, the limit $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ is equal to $10$.
(b)
Consider the provided limit,
$\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$
This means that it is required to calculate the value of $ f\left( x \right)$ when $ x $ is close to 2 but greater than 2.
Since, $ x $ is greater than 2, using the second line of the piecewise defined function's equation
$ f\left( x \right)={{x}^{3}}+2\ \ \text{if }\ x\ge 2$
$\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,\left( {{x}^{3}}+2 \right)$
Now use limit property $\underset{x\to a}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)=\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$
$\begin{align}
& \underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,\left( {{x}^{3}}+2 \right) \\
& =\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,{{x}^{3}}+\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,2
\end{align}$
Use the property $\underset{x\to a}{\mathop{\lim }}\,c=c\text{, where }c=\text{constant}$
$\begin{align}
& \underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,{{x}^{3}}+\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,2 \\
& ={{2}^{3}}+2 \\
& =8+2 \\
& =10
\end{align}$
Thus, the limit $\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ is equal to $10$.
(c)
Consider the provided limit,
$\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)$
Use the second equation of the piecewise defined function $ f\left( x \right)={{x}^{3}}+2\ \text{if }x\ge 2$
$\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to 2}{\mathop{\lim }}\,\left( {{x}^{3}}+2 \right)$
Now use the limit property $\underset{x\to a}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)=\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$
$\begin{align}
& \underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to 2}{\mathop{\lim }}\,\left( {{x}^{3}}+2 \right) \\
& =\underset{x\to 2}{\mathop{\lim }}\,{{x}^{3}}+\underset{x\to 2}{\mathop{\lim }}\,2
\end{align}$
Use property $\underset{x\to a}{\mathop{\lim }}\,c=c\text{, where }c=\text{constant}$
$\begin{align}
& \underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to 2}{\mathop{\lim }}\,{{x}^{3}}+\underset{x\to 2}{\mathop{\lim }}\,2 \\
& ={{2}^{3}}+2 \\
& =8+2 \\
& =10
\end{align}$
Thus, the limit $\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)$ is 10.