Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Section 11.2 - Finding Limits Using Properties of Limits - Exercise Set - Page 1153: 27

Answer

$\dfrac{8}{9}$

Work Step by Step

Recall that if $ f $ is a polynomial function, then we have $\lim_\limits{x\to a}f(x)=f(a)$. In order to to find the limit, we will plug $ a $ into the function and then simplify. $\lim_\limits{x\to 2} \dfrac{x^3-2x^2+4x-8}{x^4-2x^3+x-2}=\dfrac{\lim_\limits{x\to 2} (x^2+4) (x-1)}{\lim_\limits{x\to 2} (x-2)(x+1)(x^2-x+1)}=\lim_\limits{x\to 2} \dfrac{x^2+4}{(x+1)(x^2-x+1)}=\dfrac{8}{3 \cdot 3}=\dfrac{8}{9}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.