Answer
a) The value of $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$ where $ f\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}}+5\ \text{ if }x<2 \\
{{x}^{3}}+1\text{ if }x\ge 2\text{ } \\
\end{matrix} \right.$ is $9$.
b) The value of $\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$ where $ f\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}}+5\ \text{ if }x<2 \\
{{x}^{3}}+1\text{ if }x\ge 2\text{ } \\
\end{matrix} \right.$ is $9$.
c) The value of $\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)$ where $ f\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}}+5\ \text{ if }x<2 \\
{{x}^{3}}+1\text{ if }x\ge 2 \\
\end{matrix} \right.$ is $9$.
Work Step by Step
(a)
Consider the provided function,
$ f\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}}+5\ \text{ if }x<2 \\
{{x}^{3}}+1\text{ if }x\ge 2\text{ } \\
\end{matrix} \right.$
It is required to find the value of $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)$.
This means that it is required to calculate the value of $ f\left( x \right)$ when $ x $ is close to 2 but less than 2.
Because $ x $ is less than 2, use the first line of the piecewise defined function's equation, $ f\left( x \right)={{x}^{2}}+5$. Then,
$\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,\left( {{x}^{2}}+5 \right)$
Use limit property, $\underset{x\to a}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)=\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+\underset{x\to a}{\mathop{\lim }}\,\left( x \right)$
$\begin{align}
& \underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,\left( {{x}^{2}}+5 \right) \\
& =\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,{{x}^{2}}+\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,5
\end{align}$
Now, use limit property, $\underset{x\to a}{\mathop{\lim }}\,c=c $ where $ c=\text{constant}$
$\begin{align}
& \underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,{{x}^{2}}+\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,5 \\
& ={{2}^{2}}+5 \\
& =4+5 \\
& =9
\end{align}$
Thus, $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=9$.
(b)
Consider the provided function,
$ f\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}}+5\ \text{ if }x<2 \\
{{x}^{3}}+1\text{ if }x\ge 2\text{ } \\
\end{matrix} \right.$
It is required to find the value of $\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)$.
This means that it is required to calculate the value of $ f\left( x \right)$ when $ x $ is close to 2 but greater than 2.
Because $ x $ is greater than 2, using the second line of the piecewise defined function's equation, $ f\left( x \right)={{x}^{3}}+1$. Then,
$\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,\left( {{x}^{3}}+1 \right)$
Use limit property, $\underset{x\to a}{\mathop{\lim }}\,\left( f\left( x \right)+g\left( x \right) \right)=\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)+\underset{x\to a}{\mathop{\lim }}\,g\left( x \right)$
$\begin{align}
& \underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,\left( {{x}^{3}}+1 \right) \\
& =\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,{{x}^{3}}+\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,1
\end{align}$
Now, use limit property, $\underset{x\to a}{\mathop{\lim }}\,c=c $ where $ c=\text{constant}$
$\begin{align}
& \underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,{{x}^{3}}+\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,1 \\
& ={{2}^{3}}+1 \\
& =8+1 \\
& =9
\end{align}$
Thus, $\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)=9$.
(c)
Consider the provided function,
$ f\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}}+5\ \text{ if }x<2 \\
{{x}^{3}}+1\text{ if }x\ge 2\text{ } \\
\end{matrix} \right.$
From part (a), $\underset{x\to {{2}^{-}}}{\mathop{\lim }}\,f\left( x \right)=9$
From part (b), $\underset{x\to {{2}^{+}}}{\mathop{\lim }}\,f\left( x \right)=9$
As the left-hand limit and right-hand limit are equal, so, $\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)$ exist and is equal to $9$.
Hence, the value of $\underset{x\to 2}{\mathop{\lim }}\,f\left( x \right)$ where $ f\left( x \right)=\left\{ \begin{matrix}
{{x}^{2}}+5\ \text{ if }x<2 \\
{{x}^{3}}+1\text{ if }x\ge 2 \\
\end{matrix} \right.$ is $9$.