Answer
See below:
Work Step by Step
Consider the provided limit notation, $\underset{x\to 0}{\mathop{\lim }}\,\frac{x}{{{x}^{2}}+1}$.
In making the table, choose the value of x close to 0 from the left and from the right as x approaches 0.
As x approaches 0 from the left, arbitrarily start with $ x=-0.01$.
Then select two additional values of x that are closer to 0, but still less than 0; we choose $-0.001$ and $-0.0001$.
Evaluate f at each chosen value of x to obtain the corresponding values of $ f\left( x \right)$.
At $ x=-0.01$,
Substitute, $ x=-0.01$ in the provided limit notation, $\underset{x\to 0}{\mathop{\lim }}\,\frac{x}{{{x}^{2}}+1}$.
Therefore,
$\begin{align}
& \underset{x\to -0.01}{\mathop{\lim }}\,\frac{x}{{{x}^{2}}+1}=\frac{-0.01}{{{\left( -0.01 \right)}^{2}}+1} \\
& =\frac{-0.01}{0.0001+1} \\
& =\frac{-0.01}{1.0001} \\
& =-0.0100
\end{align}$
Now, at $ x=-0.001$
Substitute, $ x=-0.001$ in the provided limit notation, $\underset{x\to 0}{\mathop{\lim }}\,\frac{x}{{{x}^{2}}+1}$.
$\begin{align}
& \underset{x\to -0.001}{\mathop{\lim }}\,\frac{x}{{{x}^{2}}+1}=\frac{-0.001}{{{\left( -0.001 \right)}^{2}}+1} \\
& =\frac{-0.001}{0.000001+1} \\
& =\frac{-0.01}{1.000001} \\
& =-0.0010
\end{align}$
At $ x=-0.0001$
Substitute, $ x=-0.0001$ in the provided limit notation, $\underset{x\to 0}{\mathop{\lim }}\,\frac{x}{{{x}^{2}}+1}$.
$\begin{align}
& \underset{x\to -0.0001}{\mathop{\lim }}\,\frac{x}{{{x}^{2}}+1}=\frac{-0.0001}{{{\left( -0.0001 \right)}^{2}}+1} \\
& =\frac{-0.0001}{0.00000001+1} \\
& =\frac{-0.01}{1.00000001} \\
& =-0.0001
\end{align}$
Now, as x approaches 0 from the right, arbitrarily start with $ x=0.01$.
Then select two additional values of x that are closer to 0, but still greater than 0; we choose 0.001 and 0.0001.
At $ x=0.01$
Substitute, $ x=0.01$ in the provided limit notation, $\underset{x\to 0}{\mathop{\lim }}\,\frac{x}{{{x}^{2}}+1}$.
Therefore,
$\begin{align}
& \underset{x\to 0.01}{\mathop{\lim }}\,\frac{x}{{{x}^{2}}+1}=\frac{0.01}{{{\left( 0.01 \right)}^{2}}+1} \\
& =\frac{0.01}{0.0001+1} \\
& =\frac{0.01}{1.0001} \\
& =0.0100
\end{align}$
Now, at $ x=0.001$
Substitute, $ x=0.001$ in the provided limit notation, $\underset{x\to 0}{\mathop{\lim }}\,\frac{x}{{{x}^{2}}+1}$.
Therefore,
$\begin{align}
& \underset{x\to 0.001}{\mathop{\lim }}\,\frac{x}{{{x}^{2}}+1}=\frac{0.001}{{{\left( 0.001 \right)}^{2}}+1} \\
& =\frac{0.001}{0.000001+1} \\
& =\frac{0.001}{1.000001} \\
& =0.0010
\end{align}$
At $ x=0.0001$
Substitute, $ x=0.0001$ in the provided limit notation, $\underset{x\to 0}{\mathop{\lim }}\,\frac{x}{{{x}^{2}}+1}$.
$\begin{align}
& \underset{x\to 0.0001}{\mathop{\lim }}\,\frac{x}{{{x}^{2}}+1}=\frac{0.0001}{{{\left( 0.0001 \right)}^{2}}+1} \\
& =\frac{0.0001}{0.00000001+1} \\
& =\frac{0.01}{1.00000001} \\
& =0.0001
\end{align}$
The limit of $\frac{x}{{{x}^{2}}+1}$ as x approaches 0 equals the number 0.