Answer
See below:
Work Step by Step
Consider the provided limit notation, $\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin {{x}^{2}}}{x}$.
In making the table, choose the value of x close to 0 from the left and from the right as x approaches 0.
As x approaches 0 from the left, arbitrarily start with $ x=-0.01$.
Then select two additional values of x that are closer to 0, but still less than 0; we choose $-0.001$ and $-0.0001$.
Evaluate f at each chosen value of x to obtain the corresponding values of $ f\left( x \right)$. All the values of x are in radians.
At $ x=-0.01$,
Substitute, $ x=-0.01$ in the provided limit notation, $\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin {{x}^{2}}}{x}$.
Therefore,
$\begin{align}
& \underset{x\to -0.01}{\mathop{\lim }}\,\frac{\sin {{x}^{2}}}{x}=\frac{\sin {{\left( -0.01 \right)}^{2}}}{\left( -0.01 \right)} \\
& =\frac{\sin \left( 1\times {{10}^{-4}} \right)}{\left( -0.01 \right)} \\
& =\frac{0.0001}{-0.01} \\
& =-0.01
\end{align}$
Now, at $ x=-0.001$
Substitute, $ x=-0.001$ in the provided limit notation, $\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin {{x}^{2}}}{x}$.
$\begin{align}
& \underset{x\to -0.001}{\mathop{\lim }}\,\frac{\sin {{x}^{2}}}{x}=\frac{\sin {{\left( -0.001 \right)}^{2}}}{\left( -0.001 \right)} \\
& =\frac{\sin \left( 1\times {{10}^{-6}} \right)}{\left( -0.001 \right)} \\
& =-\frac{0.000001}{0.001} \\
& =-0.001
\end{align}$
At $ x=-0.0001$
Substitute, $ x=-0.0001$ in the provided limit notation, $\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin {{x}^{2}}}{x}$.
Therefore,
$\begin{align}
& \underset{x\to -0.0001}{\mathop{\lim }}\,\frac{\sin {{x}^{2}}}{x}=\frac{\sin {{\left( -0.0001 \right)}^{2}}}{\left( -0.0001 \right)} \\
& =\frac{\sin \left( 1\times {{10}^{-8}} \right)}{\left( -0.0001 \right)} \\
& =-\frac{0.00000001}{0.0001} \\
& =-0.0001
\end{align}$
Now, as x approaches $0$ from the right, arbitrarily start with $ x=0.01$.
Then select two additional values of x that are closer to $0$, but still greater than $0$; we choose $0.001$ and $0.0001$.
At $ x=0.01$
Substitute, $ x=0.01$ in the provided limit notation, $\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin {{x}^{2}}}{x}$.
Therefore,
$\begin{align}
& \underset{x\to 0.01}{\mathop{\lim }}\,\frac{\sin {{x}^{2}}}{x}=\frac{\sin {{\left( 0.01 \right)}^{2}}}{\left( 0.01 \right)} \\
& =\frac{\sin \left( 1\times {{10}^{-4}} \right)}{\left( 0.01 \right)} \\
& =\frac{0.0001}{0.01} \\
& =0.01
\end{align}$
Now, at $ x=0.001$
Substitute, $ x=0.001$ in the provided limit notation, $\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin {{x}^{2}}}{x}$.
Therefore,
$\begin{align}
& \underset{x\to 0.001}{\mathop{\lim }}\,\frac{\sin {{x}^{2}}}{x}=\frac{\sin {{\left( 0.001 \right)}^{2}}}{\left( 0.001 \right)} \\
& =\frac{\sin \left( 1\times {{10}^{-6}} \right)}{\left( 0.001 \right)} \\
& =\frac{0.000001}{0.001} \\
& =0.001
\end{align}$
At $ x=0.0001$
Substitute, $ x=0.0001$ in the provided limit notation, $\underset{x\to 0}{\mathop{\lim }}\,\frac{\sin {{x}^{2}}}{x}$.
$\begin{align}
& \underset{x\to 0.0001}{\mathop{\lim }}\,\frac{\sin {{x}^{2}}}{x}=\frac{\sin {{\left( 0.0001 \right)}^{2}}}{\left( 0.0001 \right)} \\
& =\frac{\sin \left( 1\times {{10}^{-8}} \right)}{\left( 0.0001 \right)} \\
& =\frac{0.00000001}{0.0001} \\
& =0.0001
\end{align}$
The limit of $\frac{\sin {{x}^{2}}}{x}$ as x approaches $0$ equals the number 0.