Answer
See below:
Work Step by Step
Consider the provided limit notation, $\underset{x\to 4}{\mathop{\lim }}\,\frac{1}{x-3}$.
In making the table, choose the value of x close to 4 from the left and from the right as x approaches 4.
As x approaches 4 from the left, arbitrarily start with $ x=3.99$.
Then select two additional values of x that are closer to 4, but still less than 4; we choose 3.999 and 3.9999.
Evaluate f at each chosen value of x to obtain the corresponding values of $ f\left( x \right)$.
At $ x=3.99$,
Substitute, $ x=3.99$ in the provided limit notation, $\underset{x\to 4}{\mathop{\lim }}\,\frac{1}{x-3}$.
Therefore,
$\begin{align}
& \underset{x\to 3.99}{\mathop{\lim }}\,\frac{1}{x-3}=\frac{1}{3.99-3} \\
& =\frac{1}{0.99} \\
& =1.0101
\end{align}$
Now, at $ x=3.999$
Substitute, $ x=3.999$ in the provided limit notation, $\underset{x\to 4}{\mathop{\lim }}\,\frac{1}{x-3}$.
$\begin{align}
& \underset{x\to 3.999}{\mathop{\lim }}\,\frac{1}{x-3}=\frac{1}{3.999-3} \\
& =\frac{1}{0.999} \\
& =1.0010
\end{align}$
At $ x=3.9999$
Substitute, $ x=3.9999$ in the provided limit notation, $\underset{x\to 4}{\mathop{\lim }}\,\frac{1}{x-3}$.
$\begin{align}
& \underset{x\to 3.9999}{\mathop{\lim }}\,\frac{1}{x-3}=\frac{1}{3.9999-3} \\
& =\frac{1}{0.9999} \\
& =1.0001
\end{align}$
Now, as x approaches 4 from the right, arbitrarily start with $ x=4.01$.
Then select two additional values of x that are closer to 4, but still greater than 4; we choose 4.001 and 4.0001.
At $ x=4.01$
Substitute, $ x=4.01$ in the provided limit notation, $\underset{x\to 4}{\mathop{\lim }}\,\frac{1}{x-3}$.
Therefore,
$\begin{align}
& \underset{x\to 4.01}{\mathop{\lim }}\,\frac{1}{x-3}=\frac{1}{4.01-3} \\
& =\frac{1}{1.01} \\
& =0.9901
\end{align}$
Now, at $ x=4.001$
Substitute, $ x=4.001$ in the provided limit notation, $\underset{x\to 4}{\mathop{\lim }}\,\frac{1}{x-3}$
Therefore,
$\begin{align}
& \underset{x\to 4.001}{\mathop{\lim }}\,\frac{1}{x-}=\frac{1}{4.001-3} \\
& =\frac{1}{1.001} \\
& =0.9990
\end{align}$
At $ x=4.0001$
Substitute, $ x=4.0001$ in the provided limit notation, $\underset{x\to 4}{\mathop{\lim }}\,\frac{1}{x-3}$.
$\begin{align}
& \underset{x\to 4.0001}{\mathop{\lim }}\,\frac{1}{x-3}=\frac{1}{4.0001-3} \\
& =\frac{1}{1.0001} \\
& =0.9999
\end{align}$
The limit of $\frac{1}{x-3}$ as x approaches 4 equals the number 1.