Answer
See below:
Work Step by Step
Consider the provided limit notation, $\underset{x\to 3}{\mathop{\lim }}\,\frac{1}{x-2}$ .
In making the table, choose the value of x close to 3 from the left and from the right as x approaches 3.
As x approaches 3 from the left, arbitrarily start with $ x=2.99$.
Then select two additional values of x that are closer to 3, but still less than 3; we choose 2.999 and 2.9999.
Evaluate f at each chosen value of x to obtain the corresponding values of $ f\left( x \right)$.
At $ x=2.99$,
Substitute, $ x=2.99$ in the provided limit notation, $\underset{x\to 3}{\mathop{\lim }}\,\frac{1}{x-2}$.
Therefore,
$\begin{align}
& \underset{x\to 2.99}{\mathop{\lim }}\,\frac{1}{x-2}=\frac{1}{2.99-2} \\
& =\frac{1}{0.99} \\
& =1.0101
\end{align}$
Now, at $ x=2.999$
Substitute, $ x=2.999$ in the provided limit notation, $\underset{x\to 3}{\mathop{\lim }}\,\frac{1}{x-2}$.
$\begin{align}
& \underset{x\to 2.999}{\mathop{\lim }}\,\frac{1}{x-2}=\frac{1}{2.999-2} \\
& =\frac{1}{0.999} \\
& =1.0010
\end{align}$
At $ x=2.9999$
Substitute, $ x=2.9999$ in the provided limit notation, $\underset{x\to 3}{\mathop{\lim }}\,\frac{1}{x-2}$.
$\begin{align}
& \underset{x\to 2.9999}{\mathop{\lim }}\,\frac{1}{x-2}=\frac{1}{2.9999-2} \\
& =\frac{1}{0.9999} \\
& =1.0001
\end{align}$
Now, as x approaches 3 from the right, arbitrarily start with $ x=3.01$.
Then select two additional values of x that are closer to 3, but still greater than 3; we choose 3.001 and 3.0001.
At $ x=3.01$
Substitute, $ x=3.01$ in the provided limit notation, $\underset{x\to 3}{\mathop{\lim }}\,\frac{1}{x-2}$
Therefore,
$\begin{align}
& \underset{x\to 3.01}{\mathop{\lim }}\,\frac{1}{x-2}=\frac{1}{3.01-2} \\
& =\frac{1}{1.01} \\
& =0.9901
\end{align}$
Now, at $ x=3.001$
Substitute, $ x=3.001$ in the provided limit notation, $\underset{x\to 3}{\mathop{\lim }}\,\frac{1}{x-2}$
Therefore,
$\begin{align}
& \underset{x\to 3.001}{\mathop{\lim }}\,\frac{1}{x-2}=\frac{1}{3.001-2} \\
& =\frac{1}{1.001} \\
& =0.9990
\end{align}$
At $ x=3.0001$
Substitute, $ x=3.0001$ in the provided limit notation, $\underset{x\to 3}{\mathop{\lim }}\,\frac{1}{x-2}$
$\begin{align}
& \underset{x\to 3.0001}{\mathop{\lim }}\,\frac{1}{x-2}=\frac{1}{3.0001-2} \\
& =\frac{1}{1.0001} \\
& =0.9999
\end{align}$
The limit of $\frac{1}{x-2}$ as x approaches 3 equals the number 1.