Answer
Discontinuous at $ x=11$
Work Step by Step
Recall that if $ f $ is a polynomial function, then we have $\lim_\limits{x\to a}f(x)=f(a)$.
$\lim_\limits{x \to 11} f(x)= \lim_\limits{x \to 11} \dfrac{x^2-121}{x-11}= \lim_\limits{x \to 11} \dfrac{(x-11)(x+11)}{x-11}=22$
and $\lim_\limits{x \to11} f(x)=22 \ne 20 =f(11)$
so, $\lim_\limits{x \to 11} f(x) \ne 20$
Therefore, the function is discontinuous at $ x=11$