Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Review Exercises - Page 1179: 25

Answer

The value of the limit as $x$ approaches $\frac{3\pi }{2}$, is $\underset{x\to \frac{3\pi }{2}}{\mathop{\lim }}\,\sin x=\underline{-1}$

Work Step by Step

Choose some values of $x$ and compute the respective values of $f\left( x \right)=\sin x$. Substitute $x=0$ in $f\left( x \right)$. $f\left( 0 \right)=\sin 0=0$ Substitute $x=\frac{\pi }{2}$ in $f\left( x \right)$. $f\left( \frac{\pi }{2} \right)=\sin \frac{\pi }{2}=1$. Substitute $x=-\frac{\pi }{2}$ in $f\left( x \right)$. $f\left( -\frac{\pi }{2} \right)=\sin \left( -\frac{\pi }{2} \right)=-1$. To find the limit of the curve, first observe the graph near $x=\frac{3\pi }{2}$ from both sides. As $x$ approaches $\frac{3\pi }{2}$ from the left, the values of $f\left( x \right)$ get closer to $-1$. Therefore, the left-hand limit, $\underset{x\to {{\frac{3\pi }{2}}^{-}}}{\mathop{\lim }}\,\sin x=-1$. As $x$ approaches $\frac{3\pi }{2}$ from the right, the values of $f\left( x \right)$ get closer to $-1$. Therefore, the right-hand limit, $\underset{x\to {{\frac{3\pi }{2}}^{+}}}{\mathop{\lim }}\,\sin x=-1$. Because, $\underset{x\to {{\frac{3\pi }{2}}^{-}}}{\mathop{\lim }}\,\sin x=-1\text{ and }\underset{x\to {{\frac{3\pi }{2}}^{+}}}{\mathop{\lim }}\,\sin x=-1$, the limit of $f\left( x \right)$ exists when $x$ approaches $\frac{3\pi }{2}$. Therefore, $\underset{x\to \frac{3\pi }{2}}{\mathop{\lim }}\,\sin x=-1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.