Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 11 - Review Exercises - Page 1179: 45

Answer

Discontinuous at $ x=2$

Work Step by Step

Recall that if $ f $ is a polynomial function, then we have $\lim_\limits{x\to a}f(x)=f(a)$. $\lim_\limits{x \to 2^{-}} f(x)= \lim_\limits{x \to 2^{-}}3x=6$ and $\lim_\limits{x \to 2^{+}} f(x)= \lim_\limits{x \to 2^{+}}(x+4)=6$ So, $\lim_\limits{x \to 2^{-}} f(x)= \lim_\limits{x \to 2^{+}}f(x)$ exists. Now, $\lim_\limits{x \to 2} f(x)=6$ and $ f(2)=5$ so, $\lim_\limits{x \to 2} f(x) \neq f(2)$ Therefore, the function is discontinuous at $ x=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.