Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 10 - Review Exercises - Page 1125: 65

Answer

The simplest form of the expression is ${{\left( {{x}^{2}}-1 \right)}^{4}}={{x}^{8}}-4{{x}^{6}}+6{{x}^{4}}-4{{x}^{2}}+1$

Work Step by Step

Thus, we get $\begin{align} & {{\left( {{x}^{2}}-1 \right)}^{4}}=\left( \begin{matrix} 4 \\ 0 \\ \end{matrix} \right){{\left( {{x}^{2}} \right)}^{4}}+\left( \begin{matrix} 4 \\ 1 \\ \end{matrix} \right){{\left( {{x}^{2}} \right)}^{3}}\left( -1 \right)+\left( \begin{matrix} 4 \\ 2 \\ \end{matrix} \right){{\left( {{x}^{2}} \right)}^{2}}{{\left( -1 \right)}^{2}}+\left( \begin{matrix} 4 \\ 3 \\ \end{matrix} \right)\left( {{x}^{2}} \right){{\left( -1 \right)}^{3}}+\left( \begin{matrix} 4 \\ 4 \\ \end{matrix} \right){{\left( -1 \right)}^{4}} \\ & =\frac{4!}{0!\left( 4-0 \right)!}\left( {{x}^{8}} \right)+\frac{4!}{1!\left( 4-1 \right)!}\left( -{{x}^{6}} \right)+\frac{4!}{2!\left( 4-2 \right)!}\left( {{x}^{4}} \right)+\frac{4!}{3!\left( 4-3 \right)!}\left( -{{x}^{2}} \right)+\frac{4!}{4!\left( 4-4 \right)!}\left( 1 \right) \\ & ={{x}^{8}}-4{{x}^{6}}+6{{x}^{4}}-4{{x}^{2}}+1 \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.