Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 10 - Review Exercises - Page 1125: 58

Answer

See the explanation below.

Work Step by Step

$\begin{align} & {{S}_{1}}:1=\frac{{{4}^{1}}-1}{3} \\ & 1=\frac{1}{3} \\ & 1=1\text{ is true}\text{.} \\ & {{S}_{k}}:1+4+{{4}^{2}}+....+{{4}^{k-1}}=\frac{{{4}^{k}}-1}{3} \\ \end{align}$ ${{S}_{k+1}}:1+4+{{4}^{2}}+....+{{4}^{k-1}}+{{4}^{k}}=\frac{{{4}^{k+1}}-1}{3}$ And add ${{4}^{k}}$ to both sides of ${{S}_{k}}$: $\begin{align} & {{S}_{k}}:1+4+{{4}^{2}}+....+{{4}^{k-1}}=\frac{{{4}^{k}}-1}{3} \\ & 1+4+{{4}^{2}}+....+{{4}^{k-1}}+{{4}^{k}}=\frac{{{4}^{k}}-1}{3}+{{4}^{k}} \\ \end{align}$ Then, simplify the right-hand side: $\begin{align} & \frac{{{4}^{k}}-1}{3}+{{4}^{k}}=\frac{{{4}^{k}}-1+3\cdot {{4}^{k}}}{3} \\ & \frac{{{4}^{k}}-1}{3}+{{4}^{k}}=\frac{4\cdot {{4}^{k}}-1}{3} \\ & \frac{{{4}^{k}}-1}{3}+{{4}^{k}}=\frac{{{4}^{k+1}}-1}{3} \\ \end{align}$ If ${{S}_{k}}$ is true, then ${{S}_{k+1}}$ is true.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.