Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 10 - Review Exercises - Page 1125: 64

Answer

The expression can be expressed in simplest form as ${{\left( 2x+1 \right)}^{3}}=8{{x}^{3}}+12{{x}^{2}}+6x+1$

Work Step by Step

Thus, we get $\begin{align} & {{\left( 2x+1 \right)}^{3}}=\left( \begin{matrix} 3 \\ 0 \\ \end{matrix} \right){{\left( 2x \right)}^{3}}+\left( \begin{matrix} 3 \\ 1 \\ \end{matrix} \right){{\left( 2x \right)}^{2}}\cdot 1+\left( \begin{matrix} 3 \\ 2 \\ \end{matrix} \right)\left( 2x \right){{\left( 1 \right)}^{2}}+\left( \begin{matrix} 3 \\ 3 \\ \end{matrix} \right){{\left( 1 \right)}^{3}} \\ & =\frac{3!}{0!\left( 3-0 \right)!}\left( 8{{x}^{3}} \right)+\frac{3!}{1!\left( 3-1 \right)!}\left( 4{{x}^{2}} \right)+\frac{3!}{2!\left( 3-2 \right)!}\left( 2x \right)+\frac{3!}{3!\left( 3-3 \right)!} \\ & =8{{x}^{3}}+3\left( 4{{x}^{2}} \right)+3\left( 2x \right)+1 \\ & =8{{x}^{3}}+12{{x}^{2}}+6x+1 \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.