Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Section 1.5 - More on Slope - Exercise Set - Page 226: 19

Answer

See the full explanation below.

Work Step by Step

(a) Consider the provided distance function: $s\left( t \right)=10{{t}^{2}}$. The value of function $s\left( t \right)=10{{t}^{2}}$ at ${{t}_{1}}=3$: $\begin{align} & s\left( 3 \right)=10\cdot {{\left( 3 \right)}^{2}} \\ & =90 \end{align}$ The value of function $s\left( t \right)=10{{t}^{2}}$ at ${{t}_{2}}=\text{4}$: $\begin{align} & s\left( 4 \right)=10\cdot {{\left( 4 \right)}^{2}} \\ & =160 \end{align}$ The rate of change is calculated by substitution of the value as ${{t}_{1}}=3\text{ seconds to }{{t}_{2}}=4\text{ seconds}$ and $s\left( {{t}_{1}} \right)=90\text{ and }s\left( {{t}_{2}} \right)=160$. $\begin{align} & \frac{\Delta s}{\Delta t}=\frac{s\left( 4 \right)-s\left( 3 \right)}{4-3} \\ & =\frac{160-90}{4-3} \\ & =70\text{ feet/sec} \end{align}$ The ball’s average velocity for ${{t}_{1}}=3\text{ seconds to }{{t}_{2}}=4\text{ seconds}$ is $70\text{feet/sec}$. (b) Consider the provided distance function: $s\left( t \right)=10{{t}^{2}}$. The value of function $s\left( t \right)=10{{t}^{2}}$ at ${{t}_{1}}=3$: $\begin{align} & s\left( 3 \right)=10\cdot {{\left( 3 \right)}^{2}} \\ & =90 \end{align}$ The value of function $s\left( t \right)=10{{t}^{2}}$ at ${{t}_{2}}=\text{3}\text{.5}$: $\begin{align} & s\left( 3.5 \right)=10\cdot {{\left( 3.5 \right)}^{2}} \\ & =122.5 \end{align}$ The rate of change is calculated by substitution of the value as ${{t}_{1}}=3\text{ seconds to }{{t}_{2}}=3.5\text{ seconds}$ and $s\left( {{t}_{1}} \right)=90\text{ and }s\left( {{t}_{2}} \right)=122.5$. $\begin{align} & \frac{\Delta s}{\Delta t}=\frac{s\left( 3.5 \right)-s\left( 3 \right)}{3.5-3} \\ & =\frac{122.5-90}{3.5-3} \\ & =\frac{32.5}{0.5} \\ & =65\text{ feet/sec} \end{align}$ The ball’s average velocity for ${{t}_{1}}=3\text{ seconds to }{{t}_{2}}=3.5\text{ seconds}$ is $65\text{feet/sec}$. (c) Consider the provided distance function: $s\left( t \right)=10{{t}^{2}}$. The value of function $s\left( t \right)=10{{t}^{2}}$ at ${{t}_{1}}=3$ ; $\begin{align} & s\left( 3 \right)=10\cdot {{\left( 3 \right)}^{2}} \\ & =90 \end{align}$ The value of function $s\left( t \right)=10{{t}^{2}}$ at ${{t}_{2}}=\text{3}\text{.01}$ ; $\begin{align} & s\left( 3.01 \right)=10\cdot {{\left( 3.01 \right)}^{2}} \\ & =90.601 \end{align}$ The rate of change is calculated by substitution of the value as ${{t}_{1}}=3\text{ seconds to }{{t}_{2}}=3.01\text{ seconds}$ and $s\left( {{t}_{1}} \right)=90\text{ and }s\left( {{t}_{2}} \right)=90.601$. $\begin{align} & \frac{\Delta s}{\Delta t}=\frac{s\left( 3.01 \right)-s\left( 3 \right)}{3.01-3} \\ & =\frac{90.601-90}{3.01-3} \\ & =\frac{0.601}{0.01} \\ & =60.1\text{ feet/sec} \end{align}$ The ball’s average velocity for ${{t}_{1}}=3\text{ seconds to }{{t}_{2}}=3.01\text{ seconds}$ is $60.1\text{feet/sec}$. (d) Consider the provided distance function: $s\left( t \right)=10{{t}^{2}}$. The value of function $s\left( t \right)=10{{t}^{2}}$ at ${{t}_{1}}=3$: $\begin{align} & s\left( 3 \right)=10\cdot {{\left( 3 \right)}^{2}} \\ & =90 \end{align}$ The value of function $s\left( t \right)=10{{t}^{2}}$ at ${{t}_{2}}=\text{3}\text{.001}$ ; $\begin{align} & s\left( 3.001 \right)=10\cdot {{\left( 3.001 \right)}^{2}} \\ & =90.06001 \end{align}$ The rate of change is calculated by substitution of the value as ${{t}_{1}}=3\text{ seconds to }{{t}_{2}}=3.001\text{ seconds}$ and $s\left( {{t}_{1}} \right)=90\text{ and }s\left( {{t}_{2}} \right)=90.06001$. $\begin{align} & \frac{\Delta s}{\Delta t}=\frac{s\left( 3.001 \right)-s\left( 3 \right)}{3.001-3} \\ & =\frac{90.06001-90}{3.001-3} \\ & =\frac{0.06001}{0.001} \\ & =60.01\text{feet/sec} \end{align}$ The ball’s average velocity for ${{t}_{1}}=3\text{ seconds to }{{t}_{2}}=3.001\text{ seconds}$ is $60.01\text{feet/sec}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.