Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Mid-Chapter Check Point - Page 229: 47

Answer

The value of the average rate of change of the function $f\left( x \right)=3{{x}^{2}}-x$ from the point ${{x}_{1}}=-1$ and ${{x}_{2}}=2$ is $2$.

Work Step by Step

We need to calculate the average rate of change of the function $f\left( x \right)=-3{{x}^{2}}-x$. Use $A=\frac{f\left( {{x}_{2}} \right)-f\left( {{x}_{1}} \right)}{{{x}_{2}}-{{x}_{1}}}$ The value of $f\left( {{x}_{2}} \right)=f\left( 2 \right)$ is: $\begin{align} & f\left( 2 \right)=3{{x}^{2}}-x \\ & =3{{\left( 2 \right)}^{2}}-2 \\ & =3\left( 4 \right)-2 \\ & =10 \end{align}$ And $f\left( {{x}_{1}} \right)=f\left( -1 \right)$ is: $\begin{align} & f\left( -1 \right)=3{{x}^{2}}-x \\ & =3{{\left( -1 \right)}^{2}}-\left( -1 \right) \\ & =3\left( 1 \right)+1 \\ & =4 \end{align}$ So, the average rate of change is: $\begin{align} & A=\frac{f\left( {{x}_{2}} \right)-f\left( {{x}_{1}} \right)}{{{x}_{2}}-{{x}_{1}}} \\ & =\frac{10-4}{2+1} \\ & =\frac{6}{3} \\ & =2 \end{align}$ Therefore, the value of the average rate of change is $2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.