Answer
See the full explanation and graph below.
Work Step by Step
Any value of $x$ can be used in the equation $f\left( x \right)={{x}^{2}}-4$.
Select five of the possible values $x=\left( -2,-1,0,1,2 \right)$ and put into equation $f\left( x \right)={{x}^{2}}-4$.
If we put $x=-2$:
$\begin{align}
& f\left( x \right)={{\left( -2 \right)}^{2}}-4 \\
& f\left( x \right)=4-4 \\
& f\left( x \right)=0 \\
\end{align}$
And if we put $x=-1$:
$\begin{align}
& f\left( x \right)={{\left( -1 \right)}^{2}}-4 \\
& f\left( x \right)=1-4 \\
& f\left( x \right)=-3 \\
\end{align}$
And if we put $x=0$:
$\begin{align}
& f\left( x \right)={{\left( 0 \right)}^{2}}-4 \\
& f\left( x \right)=0-4 \\
& f\left( x \right)=-4 \\
\end{align}$
And we if put $x=1$:
$\begin{align}
& f\left( x \right)={{\left( 1 \right)}^{2}}-4 \\
& f\left( x \right)=1-4 \\
& f\left( x \right)=-3 \\
\end{align}$
And we if put $x=2$:
$\begin{align}
& f\left( x \right)={{\left( 2 \right)}^{2}}-4 \\
& f\left( x \right)=4-4 \\
& f\left( x \right)=0 \\
\end{align}$
Draw the curve that passes through these points $\left( -2,0 \right),\left( -1,-3 \right),\left( 0,-4 \right),\left( 1,-3 \right),\left( 2,0 \right)$.