Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Mid-Chapter Check Point - Page 229: 44

Answer

The function of the graph perpendicular to the line $2x-5y-10=0$ and passing through the point $\left( {{x}_{1}},\ {{y}_{1}} \right)=\left( -4,\ -3 \right)$ is $y=-\frac{5}{2}x-13$.

Work Step by Step

The equation of the line is $y-{{y}_{1}}=m\left( x-{{x}_{1}} \right)$ , Here, the point $\left( {{x}_{1}},\ {{y}_{1}} \right)=\left( -4,\ -3 \right)$. The value of the slope $m=\frac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$. It is given that the equation is perpendicular to the line. Thus, $\begin{align} & 2x-5y-10=0 \\ & y=\frac{1}{5}\left( 2x-10 \right) \\ & =\frac{2}{5}x-2 \end{align}$ Now, the slope of the equation is $\begin{align} & m=-\frac{1}{\left( \frac{2}{5} \right)} \\ & =-\frac{5}{2} \end{align}$. So, the graph is passing through the point $\left( {{x}_{1}},\ {{y}_{1}} \right)=\left( -4,\ -3 \right)$ Thus: $\begin{align} & y-{{y}_{1}}=m\left( x-{{x}_{1}} \right) \\ & y+3=-\frac{5}{2}\left( x+4 \right) \\ & y=-\frac{5}{2}x-\frac{20}{2}-3 \\ & =-\frac{5}{2}x-13 \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.