Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter 1 - Mid-Chapter Check Point - Page 229: 40

Answer

a) 30 b) 50

Work Step by Step

(a) Compute the value of $C\left( 150 \right)$. $C\left( x \right)=\left\{ \begin{align} & 30\,\,\text{if}\,0\le x\le 200 \\ & 30+0.40\left( x-200 \right)\,\,\text{if}\,x>200 \\ \end{align} \right.$ So, at interval $0\le x\le 200$ The value of the function $C\left( 150 \right)=30$ Therefore, the value of the function $C\left( x \right)=\left\{ \begin{align} & 30\,\,\text{if}\,0\le x\le 200 \\ & 30+0.40\left( x-200 \right)\,\,\text{if}\,x>200 \\ \end{align} \right.$ at $x=150$ is $30$. (b) Compute the value of $C\left( 250 \right)$. $C\left( x \right)=\left\{ \begin{align} & 30\,\,\text{if}\,0\le x\le 200 \\ & 30+0.40\left( x-200 \right)\,\,\text{if}\,x>200 \\ \end{align} \right.$ At interval $x>200$ The value of the function $C\left( x \right)=30+0.40\left( x-200 \right)$ Now, substitute $x=250$; we get, $\begin{align} & C\left( x \right)=30+0.40\left( x-200 \right) \\ & C\left( 250 \right)=30+0.40\left( 250-200 \right) \\ & =30+0.40\left( 50 \right) \\ & =50 \end{align}$ Therefore, the value of the function $C\left( x \right)=\left\{ \begin{align} & 30\,\,\text{if}\,0\le x\le 200 \\ & 30+0.40\left( x-200 \right)\,\,\text{if}\,x>200 \\ \end{align} \right.$ at $x=250$ is $50$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.