Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 5 - Exponential and Logarithmic Functions - 5.3 One-to-One Functions; Inverse Functions - 5.3 Assess Your Understanding - Page 282: 94

Answer

$y=0.5^x-3$

Work Step by Step

The general formula for an exponential function: $Ca^x+b=y$. The horizontal asymptote is $b$. Hence $b=-3$. Thus, the tentative equation is $y=Ca^x-3$. We use the two given points to find the values of $C$ and $a$. Using $(0,-2)$ gives: $y=Ca^x-3\\ -2=C\cdot a^0 -3\\ -2=C \cdot 1 -3\\ -2=C - 3\\ -2+3=C\\ 1=C$ Thus, the tentative equation is no $y=1 \cdot a^x -3 \longrightarrow y=a^x-3$. Use $(-2, 1)$ to obtain: $y=a^x-3\\ 1=a^{-2}-3\\ 1=\frac{1}{a^2} - 3\\ 1+3=\frac{1}{a^2}\\ 4=\frac{1}{a^2}\\ 4\cdot a^2=1\\ 4a^2=1\\ a^2=\frac{1}{4}\\ \sqrt{a^2} = \pm\sqrt{\frac{1}{4}}\\ a=\pm \frac{1}{2}$ Since $a$ cannot be negative, then $a=\frac{1}{2}=0.5$ Thus, the equation is $y=0.5^x-3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.