Answer
$\approx 0.46$
Work Step by Step
We have to determine the limit:
$\displaystyle\lim_{x\rightarrow 3} \dfrac{x^3-3x^2+4x-12}{x^4-3x^3+x-3}$
We use a graphing utility to compute the limit.
The result is:
$\displaystyle\lim_{x\rightarrow 3} \dfrac{x^3-3x^2+4x-12}{x^4-3x^3+x-3}\approx 0.46$