Answer
See proof
Work Step by Step
We have:
$u_1=1$
$u_2=u_1+(1+1)$
$u_3=u_2+(2+1)$
$u_4=u_3+(3+1)$
$u_5=u_4+(4+1)$
..................................
$u_n=u_{n-1}+(n-1+1)$
$u_{n+1}=u_n+(n+1)$
Add the equations side by side:
$u_1+u_2+...+u_n+u_{n+1}=u_1+u_2+....u_n+1+2+3+4+....+(n+1)$
Simplify:
$u_{n+1}=1+2+3+...+(n+1)$
Use the formula:
$1+2+3+...+k=\dfrac{k(k+1)}{2}$
$u_{n+1}=\dfrac{(n+1)(n+2)}{2}$