Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 12 - Sequences; Induction; the Binomial Theorem - 12.1 Sequences - 12.1 Assess Your Understanding - Page 809: 94

Answer

$\approx 2.828$

Work Step by Step

We have to determine an approximation of $\sqrt 8$. We start with an approximation: $a_0=2$ Compute $a_1,a_2,a_3,a_4,a_5$ using the formula: $a_n=\dfrac{1}{2}\left(a_{n-1}+\dfrac{p}{a_{n-1}}\right)$, where $p=5$. $a_1=\dfrac{1}{2}\left(a_0+\dfrac{8}{a_0}\right)=\dfrac{1}{2}\left(2+\dfrac{8}{2}\right)=3$ $a_2=\dfrac{1}{2}\left(a_1+\dfrac{5}{a_1}\right)=\dfrac{1}{2}\left(3+\dfrac{8}{3}\right)\approx 2.8333333$ $a_3=\dfrac{1}{2}\left(a_2+\dfrac{8}{a_2}\right)=\dfrac{1}{2}\left(2.8333333+\dfrac{8}{2.8333333}\right)\approx 2.8284314$ $a_4=\dfrac{1}{2}\left(a_3+\dfrac{8}{a_3}\right)=\dfrac{1}{2}\left(2.8284314+\dfrac{8}{2.8284314}\right)\approx 2.8284271$ $a_5=\dfrac{1}{2}\left(a_4+\dfrac{8}{a_4}\right)=\dfrac{1}{2}\left(2.8284271+\dfrac{8}{2.8284271}\right)\approx 2.8284271$ So $\sqrt 8\approx 2.828$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.