Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 12 - Sequences; Induction; the Binomial Theorem - 12.1 Sequences - 12.1 Assess Your Understanding - Page 809: 95

Answer

$\approx 4.583$

Work Step by Step

We start with an approximation: $a_0=4$ Compute $a_1,a_2,a_3,a_4,a_5$ using the formula: $a_n=\dfrac{1}{2}\left(a_{n-1}+\dfrac{p}{a_{n-1}}\right)$, where $p=21$. $a_1=\dfrac{1}{2}\left(a_0+\dfrac{5}{a_0}\right)=\dfrac{1}{2}\left(4+\dfrac{21}{4}\right)=4.625$ $a_2=\dfrac{1}{2}\left(a_1+\dfrac{21}{a_1}\right)=\dfrac{1}{2}\left(4.625+\dfrac{21}{4.625}\right)\approx 4.5827703$ $a_3=\dfrac{1}{2}\left(a_2+\dfrac{21}{a_2}\right)=\dfrac{1}{2}\left(4.5827703+\dfrac{21}{4.5827703}\right)\approx 4.5825757$ $a_4=\dfrac{1}{2}\left(a_3+\dfrac{21}{a_3}\right)=\dfrac{1}{2}\left(4.5825757+\dfrac{21}{4.5825757}\right)\approx 4.5825757$ $a_5=\dfrac{1}{2}\left(a_4+\dfrac{21}{a_4}\right)=\dfrac{1}{2}\left(4.5825757+\dfrac{21}{4.5825757}\right)\approx 4.5825757$ So $\sqrt {21}\approx 4.583$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.