Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 12 - Sequences; Induction; the Binomial Theorem - 12.1 Sequences - 12.1 Assess Your Understanding - Page 809: 93

Answer

$\approx 2.236$

Work Step by Step

We have to determine an approximation of $\sqrt 5$. We start with an approximation: $a_0=2$ Compute $a_1,a_2,a_3,a_4,a_5$ using the formula: $a_n=\dfrac{1}{2}\left(a_{n-1}+\dfrac{p}{a_{n-1}}\right)$, where $p=5$. $a_1=\dfrac{1}{2}\left(a_0+\dfrac{5}{a_0}\right)=\dfrac{1}{2}\left(2+\dfrac{5}{2}\right)=2.25$ $a_2=\dfrac{1}{2}\left(a_1+\dfrac{5}{a_1}\right)=\dfrac{1}{2}\left(2.25+\dfrac{5}{2.25}\right)\approx 2.23611111111$ $a_3=\dfrac{1}{2}\left(a_2+\dfrac{5}{a_2}\right)=\dfrac{1}{2}\left(2.23611111111+\dfrac{5}{2.23611111111}\right)\approx 2.23606797792$ $a_4=\dfrac{1}{2}\left(a_3+\dfrac{5}{a_3}\right)=\dfrac{1}{2}\left(2.23606797792+\dfrac{5}{2.23606797792}\right)\approx 2.2360679775$ $a_4=\dfrac{1}{2}\left(a_3+\dfrac{5}{a_3}\right)=\dfrac{1}{2}\left(2.2360679775+\dfrac{5}{2.2360679775}\right)\approx 2.2360679775$ $a_5=\dfrac{1}{2}\left(a_4+\dfrac{5}{a_4}\right)=\dfrac{1}{2}\left(2.2360679775+\dfrac{5}{2.2360679775}\right)\approx 2.2360679775$ So $\sqrt 5\approx 2.236$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.