Answer
\[14{{x}^{2}}+x\].
Work Step by Step
Consider the expression\[2\left( {{x}^{2}}+5x \right)+3\left( 4{{x}^{2}}-3x \right)\].
Simplify it as follows:
First apply the distributive law and get,
\[2\left( {{x}^{2}}+5x \right)+3\left( 4{{x}^{2}}-3x \right)=2{{x}^{2}}+10x+12{{x}^{2}}-9x\]
Add the like terms,
\[\begin{align}
& 2\left( {{x}^{2}}+5x \right)+3\left( 4{{x}^{2}}-3x \right)=2{{x}^{2}}+10x+12{{x}^{2}}-9x \\
& =14{{x}^{2}}+x
\end{align}\]
Hence, the given algebraic expression simplified to\[14{{x}^{2}}+x\].