Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 6 - Algebra: Equations and Inequalities - Chapter Summary, Review, and Test - Review Exercises - Page 403: 11

Answer

\[x=-\frac{13}{3}\].

Work Step by Step

Consider the equation \[2\left( x-2 \right)+3\left( x+5 \right)=2x-2\] Apply the distributive law \[2x-4+3x+15=2x-2\] This gives, \[5x+11=2x-2\] Subtract \[2x\]from both the sides \[3x+11=-2\] Subtract 11 from both the sides of the above equation \[3x=-13\] Divide both the sides by 3 \[x=-\frac{13}{3}\] Now, to check it, put \[x=-\frac{13}{3}\]in the equation \[\begin{align} & 2\left( x-2 \right)+3\left( x+5 \right)=2x-2 \\ & 2\left( -\frac{13}{3}-2 \right)+3\left( -\frac{13}{3}+5 \right)=2x-2 \\ & 2\left( -\frac{19}{3} \right)+3\left( \frac{2}{3} \right)=\frac{-26}{3}-2 \\ & \left( -\frac{38}{3} \right)+\left( \frac{6}{3} \right)=\left( \frac{-26-6}{3} \right) \end{align}\] Further simplifying \[\begin{align} & \left( -\frac{38}{3} \right)+\left( \frac{6}{3} \right)=\left( \frac{-26-6}{3} \right) \\ & \left( \frac{-38+6}{3} \right)=\left( \frac{-26-6}{3} \right) \\ & \left( \frac{-32}{3} \right)=\left( \frac{-32}{3} \right) \end{align}\] which is true. Hence, the solution of the given equation is\[x=-\frac{13}{3}\].
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.