Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 6 - Algebra: Equations and Inequalities - 6.5 Quadratic Equations - Exercise Set 6.5 - Page 399: 42

Answer

the solution set is\[\left\{ -9,2 \right\}\].

Work Step by Step

Step 1:Shift all nonzero terms to left side and obtain zero on the other side. For this, subtract 18 from both the sides as follows: \[{{x}^{2}}+7x-18=18-18\] This implies that, \[{{x}^{2}}+7x-18=0\] So, after shifting all nonzero terms to the left side, the above equation becomes: \[{{x}^{2}}+7x-18=0\] Step 2:Find the factor of the above equation: Consider the equation,\[{{x}^{2}}+7x-18=0\] Factorize it as follows: \[\begin{align} & {{x}^{2}}+7x-18=0 \\ & {{x}^{2}}+9x-2x-18=0 \\ & x\left( x+9 \right)-2\left( x+9 \right)=0 \\ & \left( x-2 \right)\left( x+9 \right)=0 \end{align}\] Steps 3 and 4: Set each factor equal to zero and solve the resulting equation: From step 2, \[\left( x-2 \right)\left( x+9 \right)=0\]. By the zero product principal, either \[\left( x-2 \right)=0\]or\[\left( x+9 \right)=0\]. Now \[\left( x-2 \right)=0\] implies that\[x=2\] and \[\left( x+9 \right)=0\]implies that\[x=-9\]. Step5: Check the solution in the original equation. Check for\[x=2\]. So consider, \[\begin{align} & {{x}^{2}}+7x-18=0 \\ & {{\left( 2 \right)}^{2}}+7\times 2-18=0 \\ & 4+14-18=0 \\ & 0=0 \end{align}\] And, check for\[x=-9\]. \[\begin{align} & {{x}^{2}}+7x-18=0 \\ & {{\left( -9 \right)}^{2}}+7\times \left( -9 \right)-18=0 \\ & 81-63-18=0 \\ & 0=0 \end{align}\] Hence, the solution set is\[\left\{ -9,2 \right\}\].
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.