Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 5 - Number Theory and the Real Number System - 5.6 Exponents and Scientific Notation - Exercise Set 5.6 - Page 320: 41

Answer

\[\frac{-5{{y}^{8}}}{{{x}^{6}}}\].

Work Step by Step

Quotient rule: When exponential expressions with same base are divided then subtract the exponent in the denominator with the exponent in the numerator of the common base: \[\frac{{{a}^{m}}}{{{a}^{n}}}={{a}^{m-n}}\]. So, \[\begin{align} & \frac{30{{x}^{2}}{{y}^{5}}}{-6{{x}^{8}}{{y}^{-3}}}=-\frac{30}{6}\left( {{x}^{2-8}}{{y}^{5-\left( -3 \right)}} \right) \\ & =-5{{x}^{-6}}{{y}^{5+3}} \\ & =-5{{x}^{-6}}{{y}^{8}} \end{align}\] Negative exponent rule: For any real number \[b\]other than zero and \[m\]a natural number \[{{b}^{-m}}=\frac{1}{{{b}^{m}}}\]. Here, \[x\ne 0\]. So, \[-5{{x}^{-6}}{{y}^{8}}=\frac{-5{{y}^{8}}}{{{x}^{6}}}\] So, \[\frac{30{{x}^{2}}{{y}^{5}}}{-6{{x}^{8}}{{y}^{-3}}}=\frac{-5{{y}^{8}}}{{{x}^{6}}}\].
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.